Class VIII Session 2025-26 **Subject - Mathematics** Sample Question Paper - 2

Time Allowed: 3 hours **Maximum Marks: 80**

General Instructions:

- 1. This Question Paper has 4 Sections A-D.
- 2. Section A has 20 MCQs carrying 1 mark each.
- 3. Section B has 6 questions carrying 02 marks each.
- 4. Section C has 8 questions carrying 03 marks each.
- 5. Section D has 6 questions carrying 04 marks each.
- 6. All Questions are compulsory.
- 7. Draw neat figures wherever required. Take π =22/7 wherever required if not stated

Section A

- 1. An irrational number is [1]
 - a) a non-term inating and non-repeating decimal
 - c) a terminating and repeating decimal
- d) a terminating and non-repeating decimal

b) a non-terminating and repeating decimal

- Find $\frac{5}{9} + \left(-\frac{5}{18}\right) + \left(-\frac{7}{18}\right) + \frac{7}{9}$

- b) -3
- d) -2
- Solve for y : $\frac{1}{2}(3y + 1) \frac{1}{3}(5y + 2) = y 1$ 3.
 - a) 75
 - c) $\frac{7}{5}$

- b) $\frac{5}{7}$
- d) $\frac{-5}{7}$

- Solve: 5t 3 = 3t 54.
 - a) 1

- b) 2
- d) 0
- [1] ABCD is a quadrilateral in which AB = 5 cm, CD = 8 cm and the sum of angle A and angle D is 180° . What is 5. the name of this quadrilateral?
 - a) Rhombus

b) Trapezium

c) Parallelogram

- d) Can not be determined
- 6. In a parallelogram $\angle A : \angle B = 1 : 2$. Then, $\angle A =$

[1]

[1]

[1]

[1]

a) 60°

p) 30₀

	c) ₄₅ °	d) 90°	
7.	The smallest number by which 3888 must be divided so that the resulting number is a perfect square is		
	a) 2	b) 3	
	c) 6	d) 4	
8.		ay that each row contains as many plants as the number of	[1]
	rows. Find the number of rows.		
	a) 43	b) 49	
	c) 41	d) 47	
9.	Find the smallest number by which 2560 must be mu	ultiplied so that the product will be a perfect cube.	[1]
	a) 10	b) 20	
	c) 25	d) 15	
10.	Which one of the following will have cube root endi	ng with 3?	[1]
	a) 46656	b) 35937	
	c) 50653	d) 39304	
11.	The compound interest on ₹10 at the rate of 10% per	annum for two years will be	[1]
	a) ₹2	b) ₹2.30	
	c) ₹2.20	d) ₹2.10	
12.	2. I purchased a hair-dryer for Rs 5,400 including 8% VAT. Find the price before VAT was added.		
	a) Rs 3,000	b) Rs 4,000	
	c) Rs 2,000	d) Rs 5,000	
13.	$5x \times 4x^2 = ?$		[1]
	a) 20x	b) 20x ²	
	c) 20	d) $20x^3$	
14.	If 1 cap costs $\not\in$ ($x^2 + 4x - 21$), then what is the cost of	of $(x + 5)$ caps?	[1]
	a) ₹ (x + 5)	b) $\notin (x^3 + 9x^2 - x - 105)$	
	c) ₹ (x - 7)	d) \neq ($x^3 - 9x^2 + x - 100$)	
15.	Side of a square garden is 30 m. If the scale used to on the picture is	draw its picture is 1 cm : 5 m, the perimeter of the square in	[1]
	a) 30 cm	b) 24 cm	
	c) 28 cm	d) 20 cm	
16.	A cylindrical tank has a capacity volume 6160 cm ³ .	If its radius is 14 cm, then its depth (in cm) is	[1]
	a) 15	b) 10	
	c) 5	d) 50	
17.	If x be any integer different from zero and m, n be an	by integers, then $(x^m)^n$ is equal to	[1]

a)
$$\frac{m}{x^n}$$

b)
$$_{X}(m+n)$$

$$c)_{X}(m-n)$$

18. Seema weaves 25 baskets in 35 days. In how many days will she weave 110 baskets?

[1]

a) 140

b) 154

c) 150

- d) 144
- 19. Simplify: $(9y^2 4xy + \frac{4x^2}{9}) \div (3y \frac{2x}{3})$

[1]

a) 2y -
$$\frac{3x}{2}$$

b) $3y + \frac{2x}{3}$

c) 3y -
$$\frac{2x}{3}$$

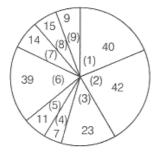
- d) 2y + $\frac{3x}{2}$
- 20. Factors for $a^2b^2 + c^2d^2 a^2c^2 b^2d^2$ are:

[1]

a)
$$(a^2 - b^2)$$

b)
$$(a + d) (a - d)(b + c)(b - c)$$

c)
$$(a^2 + b^2)$$


d)
$$(a^2 - b^2) (b^2 - c^2)$$

Section B

21. Solve: 0.16 (5x - 2) = 0.4x + 7

[2]

- 22. Two sticks each of length 5 cm are crossing each other such that they bisect each other. What shape is formed by **[2]** joining their endpoints? Give reason.
- 23. Following is a pie chart showing the amount spent (in ₹ thousands) by a company on various modes of advertising for a product. Now, answer the following questions:
 - a. Which type of media advertising is of the greatest amount of total?
 - b. Which type of media advertising is of the least amount of total?

The numbers 1-9 in the pie-chart represent:

- 1. Television
- 2. Newspaper
- 3. Magazines
- 4. Radio
- 5. Business papers
- 6. Direct mail
- 7. Yellow page
- 8. Outdoor
- 9. Miscellaneous
- 24. Using prime factorisation, find the cube root of 512.

[2]

OR

Find out if 6859 is a perfect cube?

25. Multiply: (x - y) and (3x + 5y)

[2]

[2]

26. In a town, an ice-cream parlour has displayed an ice-cream sculpture of height 360 cm. The parlour claims that these ice-creams and the sculpture are in the scale 1:30. What is the height of the ice-creams served?

 $\cap R$

The distance between City A and City B on a map is given as 6 cm. If the scale represents 1 cm = 200 km, then find the actual distance between City A and City B.

Section C

27. using appropriate properties find :
$$\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$$
. [3]

ЭR

Find
$$\frac{3}{7} + \left(\frac{-6}{11}\right) + \left(\frac{-8}{21}\right) + \left(\frac{5}{22}\right)$$
Solve: $\frac{3t+5}{4} - 1 = \frac{4t-3}{5}$

28. Solve: $\frac{3t+5}{4} - 1 = \frac{4t-3}{5}$

29. Find the value of
$$\sqrt{\sqrt{144} + \sqrt{25}}$$

30. A sum ₹10,000 is borrowed at a rate of interest 15% per annum for 2 years. Find the simple interest on this sum [3] and the amount to be paid at the end of 2 years.

OR

An article was purchased for ₹1239 including GST of 18%. Find the price of the article before GST was added.

31. Find the sum of
$$4x^2 - 3x + 2$$
 and $3x^2 + 4x - 8$. [3]

- 32. A cuboid's base has an area of 20cm², and a perimeter of 20 cm. If the cuboid's height is 6 cm, what is the total surface area?
- 33. Solve for x: [3] $3^{2x+3} = 27^{x+4}$
- 34. Factorise: $p^4 81$

Section D

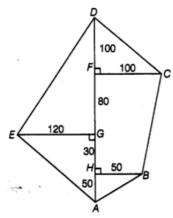
- 35. Find the measure of an exterior angle of a regular pentagon and an exterior angle of a regular decagon. What is the ratio between these two angles?
- 36. On a particular day, the sales (in rupees) of different items of a baker's shop are given below. [4]

ordinary bread	320
fruit bread	80
cakes and pastries	160
biscuits	120
others	40
Total	720

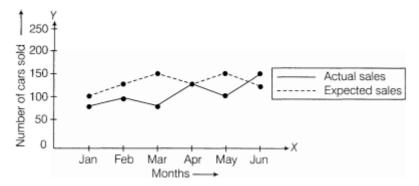
Draw a pie chart for this data

OR

The table shows the colour preferred by a group of people. Draw a pie chart showing the following information:


Colour	Blue	Green	Red	Yellow	Total
Number of people	18	9	6	3	36

37. Calculate the amount and compound interest on $\frac{1}{2}$ 18,000 for $2\frac{1}{2}$ years at 10% per annum compounded annually. **[4**]




[4]

- 39. A loaded truck travels 14 km in 25 minutes. If the speed remains the same, how for can it travels in 5 hours?
- 40. The graph given below gives the actual and expected sales of cars of a company for 6 months. Study the graph and answer the questions that follow:

- a. In which month were the actual sales the same as the expected sales?
- b. For which month(s) was (were) the difference in actual and expected sales the maximum?
- c. For which month(s) was (were) the difference in actual and expected sales the least?
- d. What was the total sales of cars in the months-January, February and March?
- e. What is the average sales of cars in the last three months?
- f. Find the ratio of sales in the first three months to the last three months.

Solution

Section A

(a) a non-term inating and non-repeating decimal

Explanation:

An irrational number is a non-terminating and nonrepeating decimal.

Explanation:

- 3.
 - **(b)** $\frac{5}{7}$

Explanation:

Given equation is

$$\frac{1}{2}(3y+1) - \frac{-1}{3}(5y+2) = y-1$$

To remove fractions, we multiply the equation on both sides by LCM of 2 $\&\ 3$ i.e

$$6\left[\frac{1}{2}(3y+1) - \frac{-1}{3}(5y+2) = 6(y-1)\right]$$

$$\Rightarrow$$
 3(3y + 1) - 2(5y + 2) = 6y - 6

$$\Rightarrow$$
 9y + 3 - 10y - 4 = 6y - 6

$$\Rightarrow$$
 9y - 10y - 6y = -6 + 4 - 3

$$\Rightarrow$$
 -7y = -5

$$\Rightarrow$$
 y = $\frac{5}{7}$

- 4.
 - **(c)** -1 **Explanation:**

5t - 3 = 3t - 5

by transposing both sides

$$5t - 3t = -5 + 3$$

$$2t = -2$$

$$t = -2/2$$

- t = -1
- 5.
 - (b) Trapezium

Explanation:

We have given that $\angle A + \angle D = 180$

Therefore, quadrilateral must be a Trapezium

- 6. (a) 60°
 - **Explanation:**

$$\angle A + \angle B = 180^{\circ}$$

$$\angle A : \angle B = 1 : 2$$

$$\therefore \angle A = \frac{1}{3} \times 180^{\circ} = 60^{\circ}$$

7.

(b) 3

Explanation:

Resolving 3888 into its prime factors, we find that

$$3888 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$$

$$3888 = (2 \times 2) \times (2 \times 2) \times (3 \times 3) \times (3 \times 3) \times 3$$

- 2 3888
- 2 1944
- 972 2
- 2 486
- 3 243
- 81
- 3
- 3 27
- 9 3 3 3

1

Here we find that prime factor 3 is appearing alone.

So, if we divide 3888 by 3, we will get a perfect square number

$$\frac{3888}{3} = (2 \times 2) \times (2 \times 2) \times (3 \times 3) \times (3 \times 3)$$

$$\therefore 1296 = (2 \times 2) \times (2 \times 2) \times (3 \times 3) \times (3 \times 3)$$

$$\therefore \sqrt{1296} = 2 \times 2 \times 3 \times 3 = 36$$

8.

(c) 41

Explanation:

Total number of plants = 1681

 \Rightarrow Number of rows \times Number of columns = 1681

(Since, number of rows=number of columns)

 $(number of rows)^2 = 1681$

Number of rows = $\sqrt{1681}$

Number of rows = 41

9.

(c) 25

Explanation:

$$2560 = 2 \times 5$$

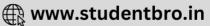
There are only one 5 so if we multiply the number by 25 then it becomes a perfect square.

10.

(b) 35937

Explanation:

Given, Unit digit of cube of number = 3


Unit digit of number = unit digit of $(3 \times 3 \times 3)$

= unit digit of 27

= 7

Hence, unit digit 3 will be cube root of 35937.

(d) ₹2.10

Explanation:

Principal = ₹10,

Interest rate = 10% per annum

Time = 2 yr

 \therefore Compound amount = Principal $(1 + \frac{\text{rate}}{100})^{\text{Time}}$

$$=10\left(1+\frac{10}{100}\right)^2$$

$$=10 \times \frac{11}{10} \times \frac{11}{10} = \frac{121}{10} = 12.10$$

.:. Compound interest = Compound Amount - Principal

= ₹2**.**10

12.

(d) Rs 5,000

Explanation:

let the price before VAT = Rs 100

$$VAT = 8\%$$

Price after VAT = (100 + 8) = Rs 108

If the price after VAT is₹108 then price before VAT is = Rs 100

If the price after VAT is ₹5400then price before VAT is = $\frac{5400 \times 100}{108}$ = Rs 5000

13.

(d)
$$20x^3$$

Explanation:

$$5x \times 4x^2$$

Multiply constants and variables we get,

$$5 \times 4 \times x \times x^2$$

$$20\times x^2 \\$$

 $20x^3$

14.

(b)
$$\neq$$
 ($x^3 + 9x^2 - x - 105$)

Explanation:

Cost of 1 cap is $\not\in$ ($x^2 + 4x - 21$)

$$\therefore$$
 Cost of $(x + 5)$ caps = $(x^2 + 4x - 21)(x + 5)$

$$= x(x^2 + 4x - 21) + 5(x^2 + 4x - 21)$$

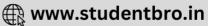
$$= x^3 + 4x^2 - 21x + 5x^2 + 20x - 105$$

$$=$$
 $(x^3 + 9x^2 - x - 105)$

15.

(b) 24 cm

Explanation:


Given, side of a square garden = 30m

- \therefore Perimeter of a square = 4 \times Side
- \therefore Perimeter of a square garden = 4 \times 30 = 120m

Scale used to draw its picture = 1 cm : 5m

Hence, the perimeter of the square in the picture $=\frac{120}{5}$ = 24 cm

(b) 10

Explanation:

Let the depth of cylindrical tank be h cm.

Radius of tank, r = 14 cm.

 \therefore Capacity of cylindrical tank = $\pi r^2 h$

$$\Rightarrow$$
 6160 = $\frac{22}{7} \times 14 \times 14 \times h$

$$\Rightarrow h = \frac{6160 \times 7}{22 \times 14 \times 14}$$

17.

(d) x^{mn}

Explanation:

Using law of exponents, $(a^m)^n = (a)^{m \times n}$ [:: a is non-zero integer]

Similarly,
$$(x^m)^n = (x)^{m \times n} = (x)^{mn}$$

18.

(b) 154

Explanation:

Let the number of days be x.

Number of baskets	25	110
Number of days	32	1

As the weaving of more baskets will require more days.

So, it is case of direct variation.

$$\Rightarrow \frac{25}{100} = \frac{35}{x} \Rightarrow 25 \times x = 100 \times 35$$
$$\Rightarrow x = \frac{110 \times 35}{25} = 154 \text{ days}$$

19.

(c)
$$3y - \frac{2x}{3}$$

Explanation:

$$\frac{9y^2 - 4xy + \frac{4x^2}{9}}{3y - \frac{2x}{3}} = \frac{(3y)^2 - 2(3y)\left(\frac{2x}{3}\right) + \left(\frac{2x}{3}\right)^2}{\left(3y - \frac{2x}{3}\right)}$$

$$= \frac{\left(3y - \frac{2x}{3}\right)^2}{\left(3y - \frac{2x}{3}\right)} = 3y - \frac{2x}{3}$$

20.

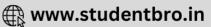
(b)
$$(a + d) (a - d)(b + c)(b - c)$$

Explanation:

$$a^{2}b^{2} + c^{2}d^{2} - a^{2}c^{2} - b^{2}d^{2}$$

$$= a^{2}b^{2} - a^{2}c^{2} - b^{2}d^{2} + c^{2}d^{2}$$

$$= a^{2}(b^{2} - c^{2}) - d^{2}(b^{2} - c^{2})$$


$$= (a^{2} - d^{2})(b^{2} - c^{2})$$

$$= (a + d)(a - d)(b + c)(b - c)$$

Section B

21. Given,
$$0.16 (5x - 2) = 0.4x + 7$$

 $\Rightarrow 0.8x - 0.32 = 0.4x + 7$
 $\Rightarrow 0.8x - 0.4x = 0.32 + 7$ [transposing 0.4x to LHS and - 0.32 to RHS]
 $\Rightarrow 0.4x = 7.32$

- x = 18.3
- 22. Sticks can be taken as the diagonals of a quadrilateral. Now, since they are bisecting each other, therefore the shape formed by joining their end points will be a parallelogram. Hence, it may be a rectangle or a square depending on the angle between the sticks.
- 23. From the information given, it is clear that
 - a. The greatest amount of the total is spent in the advertisement of the newspaper, i.e. ₹42 thousands.
 - b. The least amount of the total is spent in the advertisement of radio, i.e. ₹7 thousands.
- 24. We have, 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

Now, 512 = 2 \times 2 (making triplets)

$$\therefore \quad \sqrt[3]{512} = 2 \times 2 \times 2 = 8$$

OR

19	6859
19	361
19	19
	1

By prime factorisation,

 $6859 = \underline{19} \times \underline{19} \times \underline{19}$ [grouping the factors in triplets]

 $= 19^3$ which is a perfect cube.

Therefore, 6859 is a perfect cube.

25.
$$(x-y) \times (3x + 5y) = x \times (3x + 5y) - y \times (3x + 5y)$$

= $(x \times 3x) + (x \times 5y) - (y \times 3x) - (y \times 5y)$
= $3x^2 + 5xy - 3yx - 5y^2 = 3x^2 + 2xy - 5y^2$

26. Given, height of ice-cream sculpture = 360 cm

Scale used for ice-cream and sculpture = 1:30

The height of the ice-creams served = Scale
$$\times$$
 Actual size $\left[\because \text{ scale } = \frac{\text{size drawn}}{\text{actual size}}\right] = \frac{1 \times 360}{30} = 12 \text{ cm}$

Hence, the height of the ice-cream served is 12 cm.

OR

We have, Actual distance represented by 1 cm = 200 km

Actual distance represented by 6 cm = 6×200 km

= 1200 km

So, the actual distance between City A and City B = 1200 km

Section C

$$27. \frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{4} \times \frac{2}{5}$$

$$= \frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{2}{5} \times \frac{1}{14} \dots [By commutativity]$$

$$= \frac{2}{5} \times \left(-\frac{3}{7}\right) + \frac{2}{5} \times \frac{1}{14} - \frac{1}{6} \times \frac{3}{2} \dots [By associativity]$$

$$= \frac{2}{5} \times \left\{\left(-\frac{3}{7}\right) + \frac{1}{14}\right\} - \frac{1}{6} \times \frac{3}{2} \dots [By distributivity]$$

$$= \frac{2}{5} \times \left\{\frac{(-6)+1}{14}\right\} - \frac{1}{6} \times \frac{3}{2}$$

$$= \frac{2}{5} \times \left\{ \frac{-5}{14} \right\} - \frac{1}{6} \times \frac{3}{2} = \frac{-1}{7} - \frac{1}{4}$$
$$= \frac{-4-7}{28} = \frac{-11}{28}$$

OR

OR
We have,
$$\frac{3}{7} + \left(\frac{-6}{11}\right) + \left(\frac{-8}{21}\right) + \left(\frac{5}{22}\right)$$

$$= \frac{198}{462} + \left(\frac{-252}{462}\right) + \left(\frac{-176}{462}\right) + \left(\frac{105}{462}\right) \left[\because 462 \text{ is the LCM of 7, 11, 21 and 22}\right]$$

$$= \frac{198 - 252 - 176 + 105}{462}$$

$$= \frac{-125}{462}$$
Alternatively, We can also asked it as

Alternatively: We can also solve it as.

$$\frac{\frac{3}{7} + \left(\frac{-6}{11}\right) + \left(\frac{-8}{21}\right) + \frac{5}{22}}{2}$$

$$= \left[\frac{3}{7} + \left(\frac{-8}{21}\right)\right] + \left[\frac{-6}{11} + \frac{5}{22}\right]$$

$$= \left[\frac{9 + (-8)}{21}\right] + \left[\frac{-12 + 5}{22}\right] [\because LCM \text{ of 7 and 21 is 21; LCM of 11 and 22 is 22}]$$

$$= \frac{1}{21} + \left(\frac{-7}{22}\right)$$

$$= \frac{22 - 147}{462}$$

$$= \frac{-125}{462}$$
28. Given, $\frac{3t + 5}{4} - 1 = \frac{4t - 3}{5}$

$$\Rightarrow \frac{3t + 5 - 4}{4} = \frac{4t - 3}{5}$$

28. Given,
$$\frac{3t+5}{4} - 1 = \frac{4t-3}{5}$$

 $\Rightarrow \frac{3t+5-4}{4} = \frac{4t-3}{5}$

$$\Rightarrow$$
 5(3t + 5 - 4)= 4(4t - 3) [by cross-multiplication]

$$\Rightarrow$$
 5(3t + 1) = 4 (4t-3)

$$\Rightarrow$$
 15t+ 5 = 16t -12

$$\Rightarrow$$
 15t -16t = - 12 - 5 [transposing 16t to LHS and 5 to RHS]

$$\Rightarrow$$
 - t = -17

$$\Rightarrow \frac{-t}{-1} = \frac{-17}{-1}$$
 [dividing both sides by -1]

$$\begin{array}{l} \therefore \quad t = 17 \\ 29. \sqrt{\sqrt{144} + \sqrt{25}} \\ = \sqrt{\sqrt{3 \times 3 \times 4 \times 4} + \sqrt{5 \times 5}} \\ \sqrt{3 \times 4 + 5} \\ \sqrt{17} \end{array}$$

30. We have,

Rate of interest = 15% per annum

Time = 2 years

Principal = ₹10,000

Simple interest =
$$\frac{10000 \times 15 \times 2}{100}$$

Amount to be paid at the end of 2 years = Principal + Simple Interest

= ₹13000

OR

Given,

Cost with GST included = ₹ 1239

Let cost without GST = x

So, Cost before GST + GST = Cost with GST

$$x + (\frac{18}{100} \times x) = 1239$$

 $x + (\frac{9x}{50}) = 1239$

$$X + (\frac{1}{50}) - 1$$

$$x = 1050$$

Thus, price before GST = 1050 rupees

31.
$$(4x^2 - 3x + 2) + (3x^2 + 4x - 8) = 4x^2 - 3x + 2 + 3x^2 + 4x - 8$$

= $4x^2 + 3x^2 + 4x - 3x + 2 - 8$

$$= (4 + 3) x2 + (4 - 3)x + (2 - 8)$$
$$= 7x2 + x - 6$$

32. Total surface area of a cuboid = Lateral surface area $+ 2 \times$ area of base.

And Lateral surface area = Perimeter of base \times height = $20 \times 6 = 120 \text{ cm}^2$

Total surface area of a cuboid = $120 \text{ cm}^2 + 2 \times 20 = 160 \text{ cm}^2$

33.
$$3^{2x+3} = 27^{x+4}$$

$$3^{2x+3} = (3^3)^{(x+4)}$$

$$3^{2x+}3 = 3^{3x+12}$$

$$2x + 3 = 3x + 12$$

$$2x - 3x = 12 - 3$$

$$-x = 9$$

$$x = -9$$

$$34. p^4 - 81$$

$$=(p^2)^2-(9)^2$$

=
$$(p^2 - 9)(p^2 + 9)$$
....[Using Identity III

$$= \{(p)^2 - (3)^2\} (p^2 + 9)$$

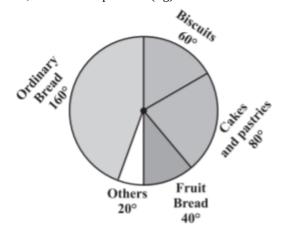
=
$$(p-3)(p+3)(p^2+9)...$$
 [Using Identity III

Section D

35. We know that, number of sides in pentagon is 5 and in decagon is 10.

Now, exterior angle of a regular pentagon = $360^{\circ}/5 = 72^{\circ}$

Exterior angle of a regular decagon = $360^{\circ}/10 = 36^{\circ}$


 \therefore Required ratio = 72/36 = 2: 1

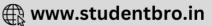
So, the ratio between these two angles is 2:1.

36. We find the central angle of each sector. Here the total sale = ₹720. We thus have this table.

Item	Sales (in ₹)	In Fraction	Central Angle
ordinary bread	320	$\frac{320}{720} = \frac{4}{9}$	$\left rac{4}{9} imes360^\circ=160^\circ ight $
fruit bread	80	$\frac{120}{720} = \frac{1}{6}$	$rac{1}{6} imes360^\circ=60^\circ$
cakes and pastries	160	$\frac{160}{720} = \frac{2}{9}$	$\left rac{2}{9} imes360^\circ=80^\circ ight $
biscuits	120	$\frac{80}{720} = \frac{1}{9}$	$rac{1}{9} imes360^\circ=40^\circ$
others	40	$\frac{40}{720} = \frac{1}{18}$	$rac{1}{18} imes360^\circ=20^\circ$

Now, we make the pie chart (fig)

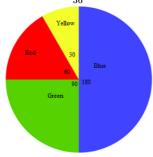
OR


$$18 + 9 + 6 + 3 = 36$$

$$\therefore$$
 Blue = $\frac{18}{36} \times 360 = 180^{\circ}$

∴ Blue =
$$\frac{18}{36} \times 360 = 180^{\circ}$$

∴ Green = $\frac{9}{36} \times 360 = 90^{\circ}$



$$\therefore$$
 Red $=\frac{6}{36} \times 360 = 60^{\circ}$

$$\therefore$$
 Yellow $= \frac{3}{36} \times 360 = 30^{\circ}$

37. By using year by year calculation

S.I. on ₹ 18000 at 10% per annum for 1 year

$$=\frac{18000\times10\times1}{100}$$
 = ₹1800

... Amount at the end of 1st year

- = ₹ 19800
- = Principle for 2nd year.

S.I. on ₹ 19800 at 10% per annum for 1 year

$$= \frac{19800 \times 10 \times 1}{100}$$

= ₹ 1980

... Amount at the end of 2nd year

- = ₹ 19800 + ₹ 1980
- = ₹ 21780
- = Principle for 3rd year

S.I. on \neq 21780 at 10% per annum for $\frac{1}{2}$ year

$$= \frac{21780 \times 10 \times 2}{2 \times 100}$$

= ₹ 1089

 \therefore Amount at the end of $2\frac{1}{2}$ years

- = ₹ 21780 + ₹ 1089
- = ₹ 22869

this is the required amount.

Now,

= ₹ 4869.

38. Area of the given figure = Area of Δ DCF + Area of Δ EGD + Area of trapezium FCBH + Area of Δ EGA + Area of Δ AHB

Now, Area of $\Delta DCF = \frac{1}{2} \times Base \times Height$

$$= \frac{1}{2} \times 100 \times 100$$

$$=\frac{10000}{2}$$

$$= 5000 \text{m}^2$$

Now, Area of Δ EGD = $\frac{1}{2}$ × Base × Height

$$= \frac{1}{2} \times 120 \times 180$$

- $= 60 \times 180$
- $= 10800 \text{m}^2$

Area of trapezium = $\frac{1}{2}$ × (Sum of parallel sides) × Height

$$=\frac{1}{2} \times (100 + 50) \times 110$$

$$= \frac{1}{2} \times 150 \times 110$$

- $= 75 \times 110 = 8250$ m²
- \therefore Area of \triangle EGA = $\frac{1}{2}$ × Base × Height

$$=\frac{1}{2} \times 120 \times 80$$

- $= 60 \times 80$
- $=4800m^2$

Now, Area of
$$\triangle$$
AHB = $\frac{1}{2}$ × Base × Height

$$= \frac{1}{2} \times 50 \times 50$$

$$=25\times50$$

$$= 1250 \text{m}^2$$

Therefore, the area of the complete figure = 5000 + 10800 + 8250 + 4800 + 1250

$$= 30100 \text{ m}^2$$

39. Two quantities x and y which vary in direct proportion have the relation

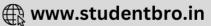
$$x = ky \text{ or } \frac{x}{y} = k$$

x = ky or
$$\frac{w}{y} = k$$

Here, $k = \frac{number\ of\ km\ it\ can\ travel}{time\ in\ hours}$
= $\frac{14}{\left(\frac{25}{60}\right)} = \frac{14 \times 60}{25}$
= $\frac{168}{168}$

Now, x is the distance travelled in 5 hours

Using the relation x = ky, we obtain


$$x=rac{168}{5} imes 5$$

$$x = 168$$

Hence, it can tavel 168 km.

- 40. After observing the graph carefully, it is clear that
 - a. In April, the actual sales were the same as the expected sales.
 - b. In March, the difference in actual and expected sales was the maximum.
 - c. In April, the difference in actual and expected sales was the least.
 - d. The total sales of cars in the months January, February and March was (75+ 100+ 75) i.e. 250.
 - e. The average sales of cars in the last three months is 125 i.e. $\frac{125+100+150}{3} = 125$
 - f. The number of sales of cars in the first three months = 250 and the number of sales of cars in the last three months = 375, Therefore the required ratio is 250: 375 i.e. 2:3.

